General Comprehensive Exam August 2012 Probability (540)

Note: Closed book exam. Calculaters allowed.

Totally 6 indexed questions in 6 pages (you may use the back sides in case needed).

A table of probability distributions are given at the end.

Sufficient writing justifications are required for full credit.

Name	!								

1. (15 points) Assume the prevalence of HIV in a population is 2%, meaning that the chance that any randomly selected person has HIV is 0.02. A certain test for HIV has sensitivity 99.7%, meaning that if a person is HIV+, the probability that he/she will be tested as positive is 0.997. At the same time, this test for HIV also has specificity 98.5%, meaning that if a person is HIV-, the probability that he/she will be tested as negative is 0.985. Question: If someone tests positive, what is the chance the person really is HIV+? (Notice: If you didn't bring a calculator, it is ok to just give out the formula of the numbers without the final calculated result.)

2. Let X have a $Uniform\left(-\frac{1}{2},\frac{1}{2}\right)$ distribution and let Z have a $Uniform(0,\frac{1}{2})$ distribution. X and Z are independent. Let $Y=X^2+Z$.

(10 points) Calculate Cov(X, Y). (5 points) Are X and Y independent? Why or why not? 3. (20 points) Let $X_1, X_2, ..., X_n \sim Exponential(\beta)$. Show that $\sum_{i=1}^n X_i \sim Gamma(n, \beta)$. (Hint: You may directly use the information from the table of probability distributions given at the end.)

4. (20 points) Let random variables X and Y have joint pdf $f(x,y)=1,\ 0\leq x\leq 1,\ 0\leq y\leq 1.$ Find the pdf of Z=X+2Y.

5. Let $\sqrt{n}X_n \sim N(0, 1)$.

(10 points) Show that X_n converges in probability to 0, as $n \to \infty$. (10 points) Show that X_n converges in distribution to a point mass at 0 (i.e., a distribution with probability 1at point 0), as $n \to \infty$. 6. (10 points) Prove Mill's Inequality: Let $Z \sim N(0,1)$. Then for any constant t > 0,

$$P(|Z| > t) \le \sqrt{\frac{2}{\pi}} \frac{e^{-t^2/2}}{t}.$$

Table of Distributions

Table of Distributions								
Distribution	PDF or probability function	mean [variance	MGF				
Point mass at a	I(x=a)	a	0	e^{at}				
$\operatorname{Bernoulli}(p)$	$p^x(1-p)^{1-x}$	p	p(1-p)	$pe^t+(1-p)$				
$\mathrm{Binomial}(n,p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(pe^t + (1-p))^n$				
$\operatorname{Geometric}(p)$	$p(1-p)^{x-1}I(x \ge 1)$	1/p	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t} \left(t < -\log(1-p)\right)$				
$\operatorname{Poisson}(\lambda)$	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$				
$\mathrm{Uniform}(a,b)$	I(a < x < b)/(b - a)	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{bt}-e^{at}}{(b-a)t}$				
$\operatorname{Normal}(\mu, \sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/(2\sigma^2)}$	μ	σ^2	$\exp\left\{\mu t + \frac{\sigma^2 t^2}{2}\right\}$				
Exponential (β)	$\frac{e^{-x/\beta}}{\beta}$	β	eta^2	$\frac{1}{1-\beta t}$ $(t < 1/\beta)$				
$\mathrm{Gamma}(\alpha,\beta)$	$\frac{x^{\alpha-1}e^{-x/\beta}}{\Gamma(\alpha)\beta^{\alpha}}$	lphaeta	$lphaeta^2$	$\left(\frac{1}{1-\beta t}\right)^{\alpha} (t < 1/\beta)$				
$\mathrm{Beta}(\alpha,\beta)$	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$1 + \sum_{k=1}^{\infty} \left(\prod_{r=0}^{k-1} \frac{\alpha+r}{\alpha+\beta+r} \right) \frac{t^k}{k!}$				
$t_{ u}$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}\frac{1}{\left(1+\frac{x^2}{\nu}\right)^{(\nu+1)/2}}.$	0 (if $\nu > 1$)	$\frac{\nu}{\nu-2} \text{ (if } \nu > 2)$	does not exist				
χ_p^2	$\frac{1}{\Gamma(p/2)2^{p/2}}x^{(p/2)-1}e^{-x/2}$	p	2p	$\left(\frac{1}{1-2t}\right)^{p/2} \ \left(t < 1/2\right)$				