General Comprehensive Exam Augu\st 2012
Probability S
Note: Closed book exam. Calculaters allowed.
Totally 6 indexed questions in 6 pages (you may use the back sides in case needed).
A table of probability distributions are given at the end.
Sufficient writing justifications are required for full credit.

1. (15 points) Assume the prevalence of HIV in a population is 2%, meaning that the
chance that any randomly selected person has HIV is 0.02. A certain test for HIV has
sensitivity 99.7%, meaning that if a person is HIV4, the probability that he/she will
be tested as positive is 0.997. At the same time, this test for HIV also has specificity
98.5%, meaning that if a person is HIV-, the probability that he/she will be tested as
negative is 0.985. Question: If someone tests positive, what is the chance the person
really is HIV4+? (Notice: If you didn’t bring a calculator, it is ok to just give out the
formula of the numbers without the final calculated result.)



2. Let X have a Uniform (—%,3) distribution and let Z have a Uniform(0,1) distrib-
ution. X and Z are independent. Let ¥ = X2 4 Z.

(10 points} Calculate Cov (X, Y).
(5 points) Are X and Y independent? Why or why not?



3. (20 points) Let Xy, Xa, ..., X,, ~ Ezponential (3). Show that } .| X, ~ Gamma (n, 8).
(Hint: You may directly use the information from the table of probability distributions
given at the end.)



4, (20 points) Let random variables X and Y have joint pdf f(z,y) =1, 0 < z < 1,
0 <y <1 Find the pdf of Z = X 4+ 2Y.



5. Let /X ~ N(0,1).

(10 points) Show that X, converges in probability to 0, as n — co.
(10 points) Show that X, converges in distribution to a point mass at 0 (i.e., a distribution
with probability lat point 0}, as n — oo.



6. (10 points) Prove Mill’s Inequality: Let Z ~ N{0,1). Then for any constant ¢ > 0,
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Table of Distributions

Distribution FDF or probability function mean variance MGF
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